CMOS Matrix-Vector Multiplier

ECE 533 – Final Design Review

Team Members (Group 1):

- Sk Hasibul Alam
- Tanjina Sabrin
- Md Farhan

Outline Review

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$

Input:

- $a, b, c, d, x, y \rightarrow 4$ -bit unsigned each Product:
- ax, by, cx, $dy \rightarrow 8$ -bit unsigned each <u>Output:</u>
- (ax + by), $(cx + dy) \rightarrow 9$ -bit unsigned

What we need:

- 4×4 Multiplier
- 8-bit Adder
- Bank of D-Latch

Adder Type:

• Carry-lookahead Adder (CLA)

Where we left: 4-bit CLA unit

N25

he net-lists matc

Schematic

4x4 Multiplier

- Things to consider:
- We need
 - 5 units of CLA4
 - 16 units of AND2.
- *C_{out}* of last CLA4 is unnecessary.
 - Remove OAI54321 (30 T) from that.
- P7 will be slowest (obviously).

471

........

· · ·

Schematic Layout +++ 中代曲 100 NIN MAR 11:121 HP F. : 귀나 귀 : 4-4 B **DRC & LVS** 4.46 4.46 44 1 47 1 17 ----....... 16 5 REAL REP. NUMBER OF STREET Running layout DRC analysis 2 2 2 2 2 22 Flat mode 中北市 11.9 Full checking. 4.4.9 為計 記書 100 100 DRC started......Thu Dec 1 22:38:49 2022 111 completedThu Dec 1 22:38:50 2022 CPU TIME = 00:00:00 TOTAL TIME = 00:00:01 14 ******* Summary of rule violations for cell "multi4 layout" ******** titit. Total errors found: 0 1 allen als aldan ala -4.1 de sie gie A2 A1 B1 BB Net-list summary for /home/salam12/ece533/cadence/LVS/layout/netlist 111 cla4 Cout count --378 12 5 1 and the nets 18 terminals AND ADD DO - **1** ************ -----368 pmos TIT 368 nmos Net-list summary for /home/salam12/ece533/cadence/LVS/schematic/netlist 41 count 378 nets 18 terminals KING KIN ADDRESS NOT 144 368 彩油 pmos <u>П</u> 100 10 368 12 . nmos 中北市 *** Terminal correspondence points sin sta 22 ¥ da sta 21 N363 NЗ A0 NO: NO 14 N362 N2 A1 35 142.1 N361 N1 A2 in the -----.............. N360 NO A3 내는 날 Ā N377 N49 BO REAL ROOM 1 N376 N48 B1 AN AD BE -----N375 N47 B2 10 A 10 A 10 11 i sis N373 N46 B3 N364 N12 GND de de 47 N372 N44 PO NIN NIN 무귀 N40 111 11 N371 P1 -----BL 91 . N370 N35 P2 N369 N33 P3 11 ----REAL REAL I KIN N368 N32 P4 1.44 1114 N367 N43 P5 *** 中代曲 N366 N45 P6 P7 N34 81 BI N365 111111 dist. VDD N18 N374 Devices in the netlist but not in the rules: ----11-2 pmos nmos • ****** he net-lists match. NOT NOT A 414 11. 8 8 2 4.4.4 事特制

4x4 Multiplier Transient Analysis (cropped)

Note:

> Inputs are changing at 25 MHz here.

- could be increased up to 50 MHz

Dynamic D-Latch

Transmission Gate based

Clocked CMOS (C²MOS)

✓ Slightly faster:

Both FETs work in parallel

Problem with dynamic output:

- May lose value due to subthreshold leakage ٠
- May lose value during burn-in test •

C²MOS Latch Transient Analysis (extracted)

As expected,

- Q follows D while clk is true.
- Q holds Q_{old} while clk is false.

But,

• t_{pdq} is not bad, but not good either.

Possible Methods of Final Design

Assume:

Inputs are driven from D-FF. Outputs are sampled by D-FF.

Method-3 In1 4 4x4 Multiplier In2 4 Multiplier

- Slowest method $(4 \times T_{clk})$
 - Inputs are serially driven.
- Internal clock needed
- Reset signal needed
 - Reset the D-FF bank at beginning, reset it again after (ax + by) is sampled.
- ✓ Small area required

	Posedge					
	0	1	2	3	4	
ln1	а	b	С	d		
In2	x	у	x	у		
Out		ax + 0	ax + by	cx + 0	cx + dy	

Method-4 ~clk $\ln 1 - \frac{1}{2}$ Bank of 4x4 8-bit Adder 8 ► Out Multiplier **D-Latch** $\ln 2 \xrightarrow{4}$ Bank of 9 8 D-Latch clk ✓ Moderately fast method $(2 \times T_{clk})$

- TDM is employed for D-Latch banks.
- Internal clock needed
- ✓ Reset signal not needed
- ✓ Smallest area required

Full Design: Matrix-Vector Multiplier

Layout

continued...

time (ns

Transistor Count					
Module	#Unit	FET/unit	Total FET		
Multiplier	1	736	736		
D-Latch	16	6	96		
CLA4	2	134	268		

1

INV2

Aggregate Count

Total Area = 297.75 $\mu m \times 204 \ \mu m$ = 0.0607 mm^2

2

2

1102

Test Case: $\begin{bmatrix} 14 & 5 \\ 12 & 11 \end{bmatrix} \cdot \begin{bmatrix} 10 \\ 13 \end{bmatrix} = \begin{bmatrix} 205 \\ 263 \end{bmatrix}$ • 205 = b0_1100_1101 • 263 = b1_0000_0111

<u>Note:</u>

clk frequency is 25 MHz here.

• can be increased up to 45 MHz

 \succ t_{pd} is 9 ns.

Conclusion

Problems we faced

- Only up to M3 was available.
- Too much emphasis upon equal $R_{rise} \& R_{fall}$
- D-FF or D-Latch?
- Placement of last CLA after D-Latch
- OAI54321: Height vs. Width

Problems in our design

- 4x4 Multiplier
 - Unnecessary \overline{P} , \overline{G} from last CLA4
 - Unnecessary XNOR2 gates at peripheral
- Final design
 - Not running at 80 MHz as predicted

Questions? Concerns? Comments?