
Direct Memory Access Controller
Design Review

ECE 551 – SoC Design

Members (Team 4):

• Sk Hasibul Alam

• Milad Tanavardi Nasab

• Tanjina Sabrin

What is Direct Memory Access?

Feature that enables some hardware
subsystems to access primary
memory independent from the CPU.

From the CPU’s perspective, it:

initiates the transfer first

does other tasks while the
transfer is ongoing

waits for the DMAC to interrupt it when the
operation is complete

* DMAC = Direct Memory Access Controller

System with AXI4-Lite
AXI = Advanced eXtensible Interface
Communicates using 5 independent channel sets:

• Read Address channel (AR)

• Read Data channel (R)

• Write Address channel (AW)

• Write Data channel (W)

• Write Response channel (B)

d
u

ri
n

g
W

R
IT

E
d

u
ri

n
g

R
EA

D

AXI4-Lite Transaction

Read Cycle Write Cycle

Vivado Simulation for AXI4-Lite Write Handshaking

Vivado Simulation for AXI4-Lite Read Handshaking

Crossbar Switch
✓Needed when there are multiple masters or multiple slaves.

Th
is

 p
ro

je
ct

Interrupt Service Routine (ISR)

Part of the CPU

• Receives 6-bit service request from the
Interrupt Handler

• Sends 2-bit status to the Interrupt
Handler

• Gets DMA status directly from the DMAC

• Sends data and address to the DMA
Register module when suitable

• Controls the crossbar

continued (ISR) …

Turns on the Master1_AXI

Sends 32-bit mode at address
0x0000_ABCD

Sends 32-bit init_addr at
address 0x0000_ABCD + 1

Sends 32-bit range at
address 0x0000_ABCD + 2

Turns off the Master1_AXI

Three packets to be sent to DMAC (via DMA Reg) from
ISR:
• mode: encapsulates the 6-bit request from the

Interrupt Handler
• init_addr: the starting address of the SRAM

available for the DMAC to read or write
• range: how many transaction the DMAC would do

with the SRAM

With appropriate request, the ISR:

continued (ISR) …
2

2
0 New request is

coming from ID: 2
(‘b10_0000) via
Handler.

2
2

5 Latch the
request.

M1_AXI is free to
write.

Prepare to load
data and addr at
next posedge clk.

2
3

5 Load mode into
data.

Load
0x0000_ABCD into
addr.

Send status as
‘b01.

Wait until M1_AXI
is free to write.

2
7

5 Load init_addr
into data.

Load
0x0000_ABCD+1
into addr.

Wait until M1_AXI
is free to write.

3
1

5 Load range into
data.

Load
0x0000_ABCD+2
into addr.

3
8

5 DMAC is now busy.

Send status as
‘b10 to
Interrupt
Handler at next
posedge clk.

Stop accessing
M1_AXI at next
posedge clk.

DMA Register

• Verifies the address (0x0000_ABCD)
from ISR

• Transfers mode, init_addr, range
packets from ISR to DMAC

• Sends 2-bit sequence info to DMAC for
discerning those three 32-bit packets

continued (DMA Reg) …
2

8
5 Valid addr

(0x0000_ABCD)
detected from
S1_AXI.

2
9

5 Copy data from
S1_AXI to DMAC.

Tell DMAC this is the
1st packet.
3

2
5 Valid addr

(0x0000_ABCD+1)
detected from
S1_AXI.

3
3

5 Copy data from
S1_AXI to DMAC.

Tell DMAC this is the
2nd packet.

3
6

5 Valid addr
(0x0000_ABCD+2)
detected from
S1_AXI.

3
7

5 Copy data from
S1_AXI to DMAC.

Tell DMAC this is the
3rd packet.

DMAC

• Has 3 registers to save mode,
init_addr, range packets from DMA
Register module

• Starts transacting with SRAM after
saving all three packets

• Keeps DMA_busy HIGH during
transaction with SRAM

• Continuously polls if the priority bit
(within mode) is HIGH

continued (DMAC) …
2

9
5 Input

sequence is
‘d1, so the
packet
must be
mode.

3
0

5 Save the
packet into
mode var.
3

3
5 Input

sequence is
‘d2, so the
packet
must be
init_addr.

3
4

5 Save the
packet into
init_addr
var.

3
7

5 Input
sequence is
‘d3, so the
packet
must be
range.

3
8

5 Save the
packet into
range var.

Assert the
dma_busy
high.

continued (DMAC) …
3

8
5 DMAC is ready to access

SRAM. Output
dma_busy is high.

M2_AXI is free to read.

Load addr
0x0000_0060 at next
posedge clk.

3
9

5 M2_AXI is free to read.

Load addr
0x0000_0060+(4) at
next posedge clk.

4
3

5 M2_AXI is free to read.

Load addr
0x0000_0060+(4×2)
at next posedge clk.

4
7

5
, 5

1
5

, 5
5

5 Repeat for addr
0x0000_0060+(4×3),
0x0000_0060+(4×4),
0x0000_0060+(4×5)

5
9

5 M2_AXI is free to read.

But range is
exhausted.

Assert the dma_busy
low at next posedge
clk.

Stop accessing M2_AXI
at next posedge clk.

But why increment by 4 (instead of 1)?

SRAM Wrapper

• Encapsulates 4 banks of SRAM block,
each sized 16×32×8

Overall Hierarchy

SRAM Transactions
C

P
U

 w
ri

te
s

to
 S

R
A

M
D

M
A

C
 r

e
ad

s
fr

o
m

 S
R

A
M

Upcoming Plans

➢Add cycle-stealing mode
• We’ve only introduced burst mode.

➢Attach three dummy peripherals
• with the Interrupt Handler

➢Complete the physical layout
• with partitioning

Questions?

Comments?

Concerns?

